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SUMMARY

The HIV-1 envelope gp120, which features both the
virus receptor (CD4) and coreceptor (CCR5/CXCR4)
binding sites, offers multiple sites for therapeutic
intervention. However, the latter becomes exposed,
thus vulnerable to inhibition, only transiently when
the virus has already bound cellular CD4. To pierce
this defense mechanism, we engineered a series
of heparan sulfate mimicking tridecapeptides and
showed that one of them target the gp120 coreceptor
binding site with mM affinity. Covalently linked to
a CD4-mimetic that binds to gp120 and renders the
coreceptor binding domain available to be targeted,
the conjugated tridecapeptide now displays nano-
molar affinity for its target. Using solubilized core-
ceptors captured on top of sensorchip we show
that it inhibits gp120 binding to both CCR5 and
CXCR4 and in peripheral blood mononuclear cells
broadly inhibits HIV-1 replicationwith an IC50 of 1 nM.

INTRODUCTION

Although tremendous progress has been made in the develop-

ment of antiviral drugs to treat human immunodeficiency virus

(HIV-1) infection (De Clercq, 2007) and despite the availability

of some 25 approved antiretroviral compounds (most of which

target HIV-1 enzymes), the virus continues to be amajor concern

and remains one of the leading causes of death worldwide. The

rapid emergence of drug-resistant viral strains, the inability

of current therapy to completely eradicate the virus, and the

strong adverse side effects associated with their long-term use

(Shafer and Schapiro, 2008) compromise treatment in patients

benefiting from these therapies and make the development of

new therapeutic options of utmost importance (Flexner, 2007).

Inhibition of HIV-1 entry, a process based on the sequential inter-

action of the viral glycoprotein (gp120) with the cell surface CD4

(Klatzmann et al., 1984) and either one of the two chemokine

receptors CCR5 or CXCR4 (Alkhatib et al., 1996; Feng et al.,
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1996), holds particular promise in addressing complications of

current therapy and has become a compelling target for control-

ling viral replication (Tilton and Doms, 2010). The recent approval

of maraviroc, a CCR5 antagonist (Dorr et al., 2005; Maeda et al.,

2004), has validated entry inhibition as a viable approach.

However, to avoid the selection of pre-existing and more patho-

genic CXCR4-using HIV-1 (for which no effective antagonistic

inhibitors yet exist) maraviroc has been licensed for the treat-

ment of patients infected with viral strains using CCR5 only.

On the virus side, the gp120 constitutes the central element for

all interactive events occurring during the pre-entry steps. A

wealth of evidence has shown that gp120 binding to CD4 not

only permits virus attachment, but also triggers extensive

conformational changes of the envelope that fold and/or expose

a four-stranded b sheet, known as the CD4-induced (CD4i)

domain (Wu et al., 1996). Being critically involved in CCR5/

CXCR4 recognition and highly conserved, this domain repre-

sents an attractive pharmacological target. Although inhibition

of protein-protein interactions is clearly challenging, a striking

feature of the CD4i domain is its basic nature (Kwong et al.,

1998; Rizzuto et al., 1998) and, not surprisingly, many of this

domain’s ligands are characteristically acidic. This includes

peptides selected by phage display screening (Dervillez et al.,

2010), sulfated oligosaccharides from the heparan sulfate (HS)

family (Crublet et al., 2008; Vivès et al., 2005), aptamers (Cohen

et al., 2008), peptides derived from neutralizing antibodies (Dorf-

man et al., 2006), compounds issued from in silico screening of

molecular libraries (Acharya et al., 2011), or peptides derived

from the N-terminal sequence of CCR5 itself that comprise sul-

fotyrosines importantly contributing to gp120 binding (Cormier

et al., 2000; Farzan et al., 2000). The cryptic nature of this CD4i

surface prior to CD4 binding, however, limits its accessibility

both temporally and spatially andmakes it a relatively intractable

pharmacological target. In that context, we recently devel-

oped a class of compounds, in which a CD4 mimetic peptide

(mCD4) was linked to a HS dodecasaccharide (HS12), and

showed that mCD4 exposed the gp120 CD4i domain and

renders it available to be blocked by the HS12 oligosaccharide

(Baleux et al., 2009).

Here, to further develop this concept we engineered a series

of tridecapeptides that mimic HS, the synthesis of which,
–139, January 27, 2012 ª2012 Elsevier Ltd All rights reserved 131
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Figure 1. Ligand Binding to CCR5 and

CXCR4 Immobilized Sensorchips

Carboxy-terminal C9 tagged CCR5 or CXCR4

were solubilized from Cf2Th cells and captured on

top of a mAb 1D4 activated CM4 sensorchip.

CCR5 (left) and CXCR4 (right) ligands were in-

jected over the coreceptor surfaces, and the

binding responses (in RU) were recorded as

a function of time (in S). Binding of 25 nM of mAb

2D7 (blue) and mAb 12G5 (red) to CCR5 (A) and

CXCR4 (B). Binding of YU2 gp120 (black), YU2/

mCD4 (blue), or YU2/mCD4/maraviroc (red) to

CCR5 (C) or MN gp120 (black), MN/mCD4 (blue),

or MN/mCD4/AMD3100 (red) to CXCR4 (D).

Binding of the equimolar complex of YU2/mCD4

at (from top to bottom) 100, 66, 44, 29, 19, and

12.5 nM to CCR5 (E) or equimolar complex of

MN/mCD4 at (from top to bottom) 225, 150, 100,

66, 44, and 29 nM to CXCR4 (F). The black traces

correspond to the experimental data, and the red

traces correspond to the fitted data using a 1:1

langmuir model. Binding of YU2 or MN gp120

(100 nM) preincubated with 100 nMofmCD4 (blue)

or mCD4-HS12 (red) to CCR5 (G) or CXCR4 (H).
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although amenable to large-scale production, remains extraor-

dinary complex (Dilhas et al., 2008). We then set up a binding

assay in which detergent solubilized CCR5 and CXCR4 were

both functionally captured on top of sensorchips and used

them to show that, conjugated to a mini CD4, a HS mimicking

peptide efficiently targets the CD4i domain of gp120 and blocks

its interaction with the coreceptors. This compound displays

antiviral activity against LAI and Ba-L HIV strains with an IC50

as low as 1 nM, two to four orders of magnitude lower than

the above-described anionic compounds. To our knowledge,

this is the most potent gp120 targeting molecule, with the

unique property to simultaneously block two critical and

conserved regions of gp120. Importantly it inhibits CCR5 and

CXCR4 using viruses equally well, and is also highly active

against a number of viral primary clinical isolates. These results

should have strong implications for the development of a new

anti-HIV-1 therapy.
132 Chemistry & Biology 19, 131–139, January 27, 2012 ª2012 Elsevier Ltd All rights reserve
RESULTS

HIV-1 Coreceptors Immobilization
and gp120 Binding
Assessing the ability of molecules to

target the coreceptor binding site of

gp120would strongly benefit fromadirect

coreceptor-gp120 interaction assay. To

that end, both HIV-1 coreceptors were

solubilized from Cf2Th cells, recombi-

nantly expressing either CCR5 or CXCR4,

using a specific cocktail of lipids and

detergents that was adapted from that

previously described (Navratilova et al.,

2005). Solubilized coreceptors, which

feature a C-terminal C9 tag (Babcock

et al., 2001; Mirzabekov et al., 1999)

allowing their oriented capture with the
cognate 1D4 antibody, were immobilized on top of a sensorchip

to a level of �4,000 resonance units (RU). To verify whether the

coreceptors remained functional, we first investigated their

binding capacity with the conformationally sensitive mAb 2D7

for CCR5 (Khurana et al., 2005; Lee et al., 1999) and 12G5 for

CXCR4 (Baribaud et al., 2001). As shown in Figures 1A and 1B,

injection of these mAbs over the CCR5 and CXCR4 functional-

ized surfaces gave rise to strong and coreceptor-specific

binding signals, indicating both the presence of the coreceptor

on the surface and the integrity of the corresponding epitopes.

Following this, we analyzed whether the immobilized corecep-

tors bound gp120, in a CD4-dependent manner. For that

purpose, 100 nM of either YU2 or MN (R5 and X4 envelopes

respectively), in the absence or presence of mCD4, a CD4

mimetic peptide that was previously found to bind gp120 and

induce the conformational change that lead to the folding/

exposure of the coreceptor binding site (Baleux et al., 2009),
d
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Figure 2. mCD4-S(XDXS)3 Constructs

A miniCD4 was used as a CD4 binding site (CD4BS) ligand and covalently

conjugated through an appropriate linker to S(XDXS)3 peptides investigated as

potential coreceptor binding site (CoRBS) ligands. S and D are serine and

aspartic acid residues respectively and X is either a sulfotyrosine (YSO3),

a p-carboxymethyl phenylalanine (pF) an aminosuberic acid (Asu) or a

tyrosine (Y). See also Figures S1 and S2 and Table S1.
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was injected over the coreceptor surfaces. Both envelopes inter-

acted with their coreceptors, presumably because the CD4i

epitope is transiently exposed on the dynamic structure of

gp120, as already observed with anti-CD4i antibodies (Thali

et al., 1993). The binding responses, however, were significantly

enhanced by the presence of mCD4 and efficiently inhibited

by 1 mM of maraviroc or AMD3100 (Figures 1C and 1D), two

compounds targeting CCR5 and CXCR4 respectively, and

having anti-HIV-1 activity (Tilton and Doms, 2010). Next, dose-

response experiments were performed with mCD4:gp120 ratios

fixed at 1:1 and injected over the immobilized CCR5 or CXCR4

surfaces. Sensorgrams were obtained for both envelopes

(Figures 1E and 1F), which evaluations (see Supplemental

Experimental Procedures) returned estimated affinities of

11.5 ± 2.9 nM and 154 ± 68 nM for CCR5 and CXCR4, respec-

tively. These values were identical to that reported by a similar

technique (Navratilova et al., 2005) or radioligand binding assay

with cell membrane-embedded CCR5 (Doranz et al., 1999) as

to that reported for CXCR4, using proteoliposome embedded

coreceptors and radiolabeled gp120 (Babcock et al., 2001).

We previously reported that the gp120 CD4i epitope can be

targeted by HS (Crublet et al., 2008; Vivès et al., 2005), and

that a HS dodecasaccharide covalently linked to mCD4

(mCD4-HS12) binds gp120 and blocks its subsequent interaction

with mAb 17b (Baleux et al., 2009). mAb 17b belongs to a group

known as ‘‘anti-CD4i’’ antibodies, which recognizes a conserved

element of gp120, induced by CD4 and partially overlapping the

coreceptor binding site (Xiang et al., 2002). We thus made use of

the coreceptor binding assay described above to investigate

whether mCD4-HS12 would also inhibit gp120 binding to CCR5

and CXCR4. As shown in Figures 1G and 1H, both YU2 and

MN gp120 in complex with mCD4-HS12 featured a strongly

reduced ability to recognize CCR5 or CXCR4 compared to that

of gp120 in complex with mCD4 alone. This suggests that

such molecules could serve as lead compounds for the future

development of a new class of entry inhibitors.

Chemical Synthesis of mCD4 Linked HS Mimetic
Peptides
HSs are, however, notoriously difficult to synthesize. In addition,

their inherent sequence heterogeneity, in terms of sulfation

pattern and saccharide composition, would currently make the

preparation of a dodecamer series out of reach. Thus, based

on the mCD4-HS12 template, we tested the hypothesis that

the HS moiety could be mimicked by peptides, the chemical

synthesis of which is more straightforward, and more easily

amenable to sequence-activity relationship investigation. To

display the functional hydroxyl, carboxyl, and sulfate groups

that characterize HS, peptides comprising Ser, Asp, and Tyr,

the latter being possibly sulfated, were considered. This strategy

is supported by the observation that a SYDY tetrapeptide binds

to the HS binding domain of the vascular endothelial growth

factor (Maynard and Hubbell, 2005) and that phage display

screenings against the CD4i epitope of gp120 returned

sequences enriched in YD motifs (Dervillez et al., 2010). It is

also worth noting that a number of antibodies against the

gp120 coreceptor binding domains feature sulfotyrosines in their

paratope, as does the N terminus of both CCR5 and CXCR4

(Choe et al., 2003).
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Building of a S(XDXS)n sequence (were X stands for different

possible amino acids; see below) using the peptide builder of

Hyperchem 5, showed that a 13 amino acid peptide (n = 3), in

its extended configuration (4, c, and u angles set to 180�) would

have a length equivalent to the HS 12 mer (data not shown).

Thus, a tridecapeptide, alternating OH/COO- and OH/SO3
-

groups, having the sequence: SYSO3DYSO3SYSO3DYSO3SYSO3

DYSO3S (X being in this case a sulfotyrosine; YSO3) was first

synthesized (P3YSO3). The nonsulfated equivalent (P3Y) was

also prepared along with a number of other peptides in which

X was replaced by p-carboxymethyl phenylalanine (P3pF) or

aminosuberic acid (P3Asu), two residues that have been shown

to functionally mimic sulfotyrosine in cholecystokinin type B

receptor ligand CCK8 (McCort-Tranchepain et al., 1992) and

sulfakinins (Nachman et al., 2005). A tridecaglutamate (display-

ing 13 carboxylic groups) was also prepared (E13) as a nonspe-

cific poly anionic peptide (Figure 2). In order to maintain an

appropriate distance between mCD4 and these peptides,

enabling the final molecule to reach both the CD4 and corecep-

tor binding sites, a g-aminobutyric acid (g-Abu) was introduced

on their N terminus. These peptides were derivatized with

S-acetylthiopropionic acid to allow the coupling to Lys5 of a

maleimide-activated mCD4. All compounds were purified to

a level of 95% by RP-HPLC (see Table S1 and Figures S1

and S2 available online), controlled by mass spectrometry and
–139, January 27, 2012 ª2012 Elsevier Ltd All rights reserved 133
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BA Figure 3. The S(XDXS)3 HS Mimetic Peptides

Coupled to mCD4 Inhibit gp120-CD4, gp120-mAb

17b, and gp120-Coreceptor Interactions through

Binding to the CD4 and the Coreceptor Binding

Sites of gp120

Binding responses measured when YU2 (A) or MN (B)

gp120 at 100 nM, either alone (blue) or preincubated with

100 nM of mCD4 (pink), mCD4-P3Y (green), mCD4-E13

(turquoise), mCD4-P3pF (orange), mCD4-P3Asu (brown),

or mCD4-P3YSO3 (red) were injected over a CD4 activated

surface. YU2-mCD4 (C) or MN-mCD4 (D) complexes

(25 nM) were preincubated with 5 mM of HS12 (red),

P3YS03 (green), or the other HS mimetic peptides (none,

P3Y, E13, P3pF, and P3Asu; all in black) and injected over

a mAb 17b activated surface. The blue trace shows the

binding of gp120 to mAb 17b in the absence of mCD4. The

P3YSO3 peptide (E) or HS12 (F) at different concentrations

were coincubated with YU2-mCD4 (circle) or MN-mCD4

(square) and injected over a mAb 17b surface. The binding

response (mean of triplicate experiment) recorded at the

end of the injection phase was plotted versus the con-

centration of the inhibitors in mM. Overlay of sensorgrams

showing the injection of 100 nM of mCD4 (blue), mCD4-

P3Y (black) or mCD4-P3YSO3 (red), from 0 to 600 s, over

immobilized YU2 (G) orMN (H) gp120, after which 15 mg/ml

of mAb 17b was injected from 600 to 900 s. Binding of

YU2 or MN gp120 (100 nM) preincubated with 100 nM of

mCD4 (blue) or mCD4-P3YSO3 (red) to CCR5 (I) or CXCR4

(J). In all graphs, binding signals were recorded in RU as

a function of time (S).
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quantified by amino acid analysis as described in the Supple-

mental Experimental Procedures.

mCD4 Linked HS Mimetic Peptides Inhibit Binding
of gp120 to CD4, mAb 17b, and Coreceptors
To verify that peptide conjugation did not prevent the ability of

mCD4 to interact with gp120, a competition assay was per-

formed, in which YU2 or MN were incubated with the different

mCD4 conjugates and injected over a CD4 functionalized

surface. Results showed that the mCD4 conjugates all very effi-
134 Chemistry & Biology 19, 131–139, January 27, 2012 ª2012 Elsevier Ltd All rights r
ciently prevent gp120-CD4 interaction, with

greater potency than that of unconjugated

mCD4 (Figures 3A and 3B). Next, the capacity

of the anionic peptides to target the gp120

CD4i epitope was investigated by analyzing

their ability to prevent gp120 binding to mAb

17b, in the presence of soluble mCD4. While un-

liganded gp120 was not (MN) or only poorly

(YU2) recognized by mAb 17b (Figures 3C and

3D; blue trace), preincubation with mCD4

strongly promoted binding (black trace). When

the gp120-mCD4 complexes were further incu-

batedwith 5 mMof the above-described trideca-

peptides, strong inhibition was observed for

P3YSO3 (green trace). The tridecaglutamate

(E13) was devoid of activity, indicating that the

anionic character of the peptide is not sufficient

to provide binding, as were the unsulfated P3Y

or the sequence in which the sulfotyrosine

mimetics (pF and Asu) were introduced (Figures
3C and 3D, black traces). HS12 (red trace) also fully blocked

mAb17b binding to MN-, but not to YU2-gp120. Together, this

showed that among the different peptides investigated only the

SYSO3DYSO3 motif competes with mAb 17b to interact with the

gp120 CD4i domain. To better quantify the inhibitory activity of

this peptide, the same assay was run, with a range of P3YSO3

concentrations, and compared with HS12. A similar concentra-

tion dependency was observed on both R5 (YU2) and X4 (MN)

envelopes, with IC50 of 2.9 and 3.1 mM, respectively, indicating

that, interestingly, P3YSO3 interacts with gp120 independently
eserved
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Figure 4. Antiviral Activity of mCD4 Linked to Either HS12 or

S(XDXS)3 HS Mimetic Peptides

PHA-P-activated PBMCs were infected with either (A) LAI (X4 tropic) or

(B) Ba-L (R5 tropic) HIV-1 strains, preincubated with each of the drugs under

investigation (1:5 dilutions between 500 nM and 320 pM). Molecules and

viruses were maintained throughout the culture, and cell supernatants were

collected at day 7 postinfection. Reverse transcriptase activity was quantified

from which 50 (black), 70 (gray), and 90% (white) effective doses (ED) were

calculated. In the absence of the inhibitory compounds, the RT level was in the

range of 10,000–25,000 and 6,500–10,000 pg/ml (depending on the donor) for

LAI and Ba-L strains respectively. Data are represented as mean of triplicate

experiments (±SEM) performed on PBMCs from three to four donors. See also

Table S2.
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of coreceptor tropism. In contrast, HS12 strongly inhibited the

interaction between MN and mAb 17b (with a concentration as

low as 0.5 mM) but was ineffective toward YU2, at concentrations

up to 10 mM (Figures 3E and 3F). Next, to determine the binding

mechanism of the mCD4-S(XDXS)3 constructs, X4- and R5-

gp120 were immobilized on a sensorchip and first allowed to

bind to mCD4, mCD4-P3Y, or mCD4-P3YSO3. The resulting

complexeswere then probedwithmAb 17b, the binding of which

being a marker of the coreceptor binding site accessibility. As

expected, mCD4 binding to gp120 renders the coreceptor

binding site accessible, a point that was also observed, although

with a lower efficiency, withmCD4-P3Y. These data indicate that

while mCD4-P3Y bound to gp120, the unsulfated peptide did not

sufficiently interact with the newly available surface to blockmAb

17b recognition. In contrast, when mCD4-P3YSO3 was used

instead of mCD4 or mCD4-P3Y, the mAb 17b was no longer

able to interact with the complex. Altogether, these data thus

support the view that mCD4 first binds to gp120 and exposes

the coreceptor binding site, with which the P3YSO3 moiety

then interacts strongly enough to prevent antibody binding

(Figures 3G and 3H). Finally, using the direct gp120-coreceptor

interaction assay described in Figure 1, we also demonstrated

that mCD4-P3YSO3 very potently inhibits gp120 binding to

both CCR5 and CXCR4 (Figures 3I and 3J). This suggests that

this compound could be a coreceptor independent HIV-1 entry

inhibitor.

mCD4 Linked P3YSO3 Peptides Display Strong Antiviral
Activity
Having characterized the binding mechanism of these com-

pounds, we investigated whether these anionic peptides, either

conjugated or not to mCD4 displayed anti-HIV-1 activity. This

was performed using an assay in which viral replication was

measured (reverse transcriptase quantification) in the superna-

tant of blasted peripheral blood mononuclear cells (PBMCs) iso-

lated from three to four donors and infected by either of the HIV-1

reference strains R5 (Ba-L) or X4 (LAI). When used alone, none of

the peptides demonstrated antiviral activity at the highest con-

centration tested (500 nM; data not shown). However, when

conjugated to mCD4, they displayed inhibitory activity against

the LAI strain, with effective doses giving 50% inhibition (ED50)

as low as 0.5 nM for mCD4-P3YSO3, which compares well to

1.4 nM for mCD4-HS12. Consistently with the biochemical

data, the importance of the sulfate groups was shown by

the large increase of ED50 (98 nM) that characterized mCD4-

P3Y, whereas the other anionic peptides (mCD4-P3pF, mCD4-

P3Asu, and mCD4-E13) displayed 8.2–30 nM ED50 (Figure 4A).

The Ba-L strain was also very strongly inhibited by mCD4-

P3YSO3, with an ED50 of 1.3 nM versus 18 nM for mCD4-HS12.

None of the other conjugates displayed significant antiviral

activity (Figure 4B). AZT, used as a reference anti-HIV molecule

in the same assay returned ED50 of 8.7 and 11 nM for R5 and X4

viruses, respectively (Figures 4A and 4B).

We also observed that mCD4-P3YSO3 does not need to be

preincubated with the virus to be active. Indeed, addition of

the molecule either to the cells prior to the viral challenge or to

the virus prior to the cell infection return identical results (Table

S2). This is consistent with the high affinity this molecule displays

for the viral envelope, presumably enabling a fast binding to its
Chemistry & Biology 19, 131
target, and also suggests a potential use of this kind of

compounds as a microbicide, a condition in which inhibitors

are present within the host tissues, before viral infection.

Having established that mCD4-P3YSO3 displayed very strong

antiviral activity against LAI and Ba-L HIV-1 strains, used as

model systems, we extended our investigations to using a series

of more clinically relevant primary strains, including 92UG029,

SF162, 92US723, 96USHIPS4, 92HT599, and 98IN017. As

shown in Table 1, mCD4-P3YSO3 displayed a high level of anti-

viral activity, characterized by ED50 in the range of 0.2–1.2 nM for

five of them and 29 nM for HIV-1 98IN017. As for the LAI and

Ba-L strains, the mCD4 or P3YSO3 were only poorly active or

inactive, further supporting the very strong synergistic effect

induced by the coupling strategy. None of themolecules showed

cytotoxicity at up to 1 mM (data not shown).
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Table 1. Anti-HIV-1 activity of AZT, mCD4-P3YSO3, P3YSO3, and mCD4 against Clinical HIV-1 Isolates

Viral Strain

Clade-Tropism

92UG029

A-X4

SF162

B-R5

92US723

B-R5/X4

96USHIPS4

B-R5/X4

92HT599

B-X4

98IN017

C-X4

AZT ED50 7 ± 0 8 ± 7 8 ± 0.1 19 ± 9 9 ± 4 8 ± 3

ED70 16 ± 3 13 ± 8 17 ± 1 27 ± 11 22 ± 5 19 ± 5

ED90 61 ± 17 31 ± 3 59 ± 19 56 ± 15 110 ± 13 108 ± 25

mCD4-P3YSO3 ED50 0.2 ± 0.0 0.3 ± 0.2 0.3 ± 0.1 1.2 ± 1 0.5 ± 0.2 29 ± 18

ED70 0.3 ± 0.1 0.4 ± 0.3 0.35 ± 0.2 1.6 ± 1.2 1.3 ± 0.9 147 ± 9

ED90 0.8 ± 0.3 0.9 ± 0.2 0.45 ± 0.2 3 ± 1.4 3.5 ± 0.0 >500

P3YSO3 ED50 >500 >500 >500 >500 >500 >500

ED70 >500 >500 >500 >500 >500 >500

ED90 >500 >500 >500 >500 >500 >500

mCD4 ED50 403 ± 76 245 ± 155 23 ± 1 >500 355 ± 155 >500

ED70 >500 352 ± 105 34 ± 10 >500 >500 >500

ED90 >500 >500 52 ± 22 >500 >500 >500

The table shows the effective dose (ED, mean of triplicate determination), in nM (±SD) required to inhibit 50%, 70%, and 90% of HIV-1 replication.
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DISCUSSION

Targeting gp120 for HIV-1 inhibition is both attractive (because

the protein engages multiple interactions key to viral entry,

thus offering multiple sites for inhibition) and challenging (in the

entry complex, the buried surface to block comprises both

the gp120-CD4 and gp120-coreceptor interfaces). Although

protein-protein interfaces are often relatively featureless and

devoid of traditional cavities into which a small molecule can

dock, the realization that the gp120 coreceptor binding site

displays a restricted number of functionally important basic resi-

dues has very recently attracted the attention of many studies.

Many of them reported that anionic molecules target the CD4i

epitope, as shown by their ability to competitively inhibit mAb

17b binding with IC50 in the 1–100 mM range (Acharya et al.,

2011; Brower et al., 2009; Cohen et al., 2008; Cormier

et al., 2000; Crublet et al., 2008; Dervillez et al., 2010; Farzan

et al., 2000; Kwong et al., 2011; Seitz et al., 2010). HS belongs

to this class of CD4i domain targeting molecules (Crublet et al.,

2008), and a highly sulfated and regular sequence comprising

12 monosaccharide units has been recently prepared. Conju-

gated to mCD4, it displays strong anti-HIV-1 activity (Baleux

et al., 2009). However, HS is extraordinary complex and hetero-

geneous in sequence (Esko and Lindahl, 2001). Based on the 48

different units that the polymer theoretically comprises, a 12 mer

library would reach 1010 molecules. Although the reality is less

(all the combinations are not possible), it remains much more

than can be realistically synthesized for structure-activity rela-

tionship studies. Thus, to further develop this kind of molecule

we attempted to design HS mimetic peptides, with the general

sequence S(XDXS)3 and showed that, when X was a sulfotyro-

sine, it binds to the CD4i epitope, blocking mAb 17b with IC50

of 3 mM, thus comparing very well with the above-mentioned

molecules. Interestingly, this peptide interacts equally well with

R5 and X4 gp120, whereas HS especially binds to the X4 enve-

lope (Figures 3E and 3F). More importantly, the conjugation of

this peptide to mCD4 dramatically enhances its binding activity,

the conjugated molecule being able to fully prevent the gp120/

mAb 17b interaction at low nM concentration, showing that the
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covalent linkage induced a strong synergistic effect. This is

consistent with the view that high-affinity mCD4 binding takes

place initially, inducing the exposure of the mAb 17b epitope to

which the sulfated peptide can then bind. As such, this molecule

is distinct from other mAb 17b blocking peptides that suppress

CD4 binding and subsequent coreceptor binding site exposure

through an allosteric inhibitory effect rather than competitive

inhibition (Biorn et al., 2004).

Although widely used as a CCR5 or CXCR4 surrogate, mAb

17b, however, only imperfectly defines the gp120 coreceptor

binding site which, in addition to theCD4 induced bridging sheet,

is also constituted by the V3 loop in particular (Dragic, 2001).

Thus, to better assess the blocking efficiency of molecules

targeting the gp120-coreceptor interaction, and taking into

account domains outside the CD4i epitope itself, CCR5 and

CXCR4 were solubilized and functionally captured on top of bia-

core sensorchips. Binding of gp120 to CCR5 and CXCR4 proved

to be both CD4 and concentration dependent and inhibited by

specific antagonists. Fitting of the binding data was expectedly

complicated by several parameters, such as the complexity of

the buffer system used, the reversible nature of both the

1D4-coreceptor and mCD4-gp120 complexes and the confor-

mational flexibility of gp120, thus the calculated affinity values

reported should probably be considered as estimates only.

Nevertheless, we report KDs of 10 and 150 nM for the YU2-

CCR5 and MN-CXCR4 interactions respectively, comparable

to those obtained with cellular systems in which the coreceptors

remained in their natural cell membrane environment (Babcock

et al., 2001; Doranz et al., 1999). This assay provides a useful,

label-free method, to identify both binding capacity of envelopes

and inhibitory activity of potential drugs. This was especially true

in the framework of this study investigating sulfated/polyanionic

compounds to target the gp120 coreceptor binding site.

Although tyrosine sulfation of coreceptors has been shown to

play a less significant role in CXCR4- than in CCR5-dependent

HIV-1 entry (Farzan et al., 2002), we found that when conjugated

to mCD4 the sulfated P3YSO3 displays very strong binding

activity toward both R5- and X4- gp120. Using this assay, we

indeed report that gp120 binding to both CCR5 and CXCR4
ier Ltd All rights reserved
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was fully inhibited by 1:1 stoichiometric condition of mCD4-

P3YSO3. The overall positive charge of the V3 loop, which is

much higher in X4- than in R5-gp120 (Moulard et al., 2000)

strongly influences the electrostatic potential of the coreceptor

binding region of the protein. In the case of CXCR4-using

viruses, electrostatic interactions between the sulfated peptide

and the V3 loop may thus also participate in the blocking mech-

anism. This view is consistent with the fact that the V3 loop

(which importantly contributes to coreceptor binding) is located

close to the CD4i bridging sheet and with its known capacity to

interact with polyanions (Moulard et al., 2000). This is further sup-

ported by the observation that all the anionic peptides prepared

during the course of this study (mCD4-P3Asu, mCD4-P3pF,

mCD4-E13, and mCD4-P3Y) also display some level of antiviral

activity against X4- but not against R5- viruses. This also sug-

gests that, in engineering such compounds, it should be advan-

tageous to use sulfated peptides with only modest specificity so

that they can broadly target distinct envelopes, the high speci-

ficity of the conjugated bivalent compound being brought by

the mCD4 moiety. Structural studies of mCD4-P3YSO3, in

complex with different gp120 would be interesting approaches

to further define these aspects. In this regard, it can be noted

that sulfated peptides would represent an advantage over HS,

the crystallography of which, in complex with proteins appearing

to be specially challenging (Imberty et al., 2007).

Although relatively limited in molecular mass (5,500 Da) the

mCD4-P3YSO3 molecule has the remarkable property to target

two critical and conserved regions of gp120, and thus to simul-

taneously block two large protein surfaces (i.e., the CD4 and

the coreceptor binding site). In complete agreement with the

biochemical data, it displays 1 nM ED50 anti-HIV-1 activity, for

both CXCR4 and CCR5 using model viruses in a cellular assay.

Importantly, we also found that this compound had a broad

neutralizing activity and was very effective against a number of

HIV-1 clinical isolates, strongly suggesting that this approach

deserves further investigation toward in vivo evaluation. No

effective antagonistic inhibitors yet exist for CXCR4. This

compound, which at 1 mM is devoid of toxicity, could be a valu-

able weapon against the more aggressive CXCR4-tropic HIV-1

strains or for patients featuring a mixed HIV-1 population for

which CCR5 antagonist cannot be used.

SIGNIFICANCE

While very significant progress has been made in the devel-

opment of anti-HIV-1 drugs, the emergence of drug-resis-

tant viruses, the inability of current therapy to be curative,

and its adverse side effects have led to an urgent need for

new blocking strategies. As a target, gp120 that features

the coreceptor binding site is particularly attractive. How-

ever, its cryptic nature makes it a difficult target that up to

now has resisted attacks.

Here, we covalently linked a sulfotyrosine containing

tridecapeptide that targets the gp120 coreceptor binding

site, to a CD4 mimetic (mCD4). We showed that the mCD4,

in interacting with gp120, induces conformational changes

that expose the coreceptor binding site and renders it

available to be blocked by the sulfated peptide. In cellular

assays, this compound, which successfully targets two
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critical domains of gp120, displays strong antiviral activities

and neutralizes HIV-1 with 1 nM IC50.

The conjugate was much more effective than a mixture of

mCD4 and tridecapeptide alone, indicating that the covalent

linkage is essential to produce a synergistic effect. To our

knowledge, this compound establishes a new type of in-

hibitor and suggests a concept by which a relatively low

specific molecule (the sulfated peptide), coupled to a highly

specific compound (themCD4) can reach very high affinities

for its target. Combining these two characteristics may

enable the molecule to accommodate mutations that invari-

ably characterize acquired viral resistance.

These results should have strong implications for

the development of a new class of anti-HIV-1 therapy: the

mCD4-conjugate simultaneously blocks the attachment

and entry domains of gp120 and thus inhibits viral replication

at a very early stage of the viral life cycle. Most importantly, it

has the remarkable and unique property to neutralize both

CCR5- and CXCR4-tropic HIV-1. This is definitively a strong

advantage since HIV-1 may escape from CCR5 antagonists

through selection of CXCR4-using variants.
EXPERIMENTAL PROCEDURES

Materials

A BIAcore 3000 machine, CM4 sensorchip, amine coupling kit and HBS-P

(10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.005% surfactant P20

[pH 7.4]) were from GE-Healthcare. Streptavidin and Piperidin were from

Sigma. MN and YU2 gp120 were from Immunodiagnostic. Soluble CD4,

mAb 17b and Cf2Th coreceptor expressing cells were obtained through the

NIH AIDS Research and Reference Reagent Program. The antibodies 12G5

and 2D7 were purchased from R&D systems and BD Pharmingen, respec-

tively. The HIV-1 entry inhibitors AMD3100 andMaraviroc were from Fernando

Arenzana (Pasteur Institute, Paris). The1D4 antibody was from Flint Box,

University of British Columbia. Synthetic phospholipid blend 1,2-dioleoyl-sn-

glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phospho-L-serine for-

mulation (DOPC/DOPS; 7:3, w/w), the Mini-Extruder kit, filter supports and

polycarbonate filters with defined pore diameter (100 nm) were purchased

from Avanti Polar Lipids. Detergents, n-dodecyl-b-D-maltopyranoside

(DOM), 3-[(3-Cholamidopropyl)-dimethylammonio]-1-propane sulfonate/N,N-

Dimethyl-3-sulfo-N-[3-[[3a,5b,7a,12a)-3,7,12-trihydroxy-24-oxocholan-24-yl]

amino]propyl]-1-propanaminium (Chaps) and Cholesteryl hemisuccinate tris

salt (CHS) were purchased from Anatrace. Complete, EDTA-free protease

inhibitor tablets were from Roche Diagnostics. Polyethylene glycol 8,000

50% w/v solution was purchased from Hampton research. Resins for peptide

synthesis were purchased from RAPP Polymere GmbH and Fmoc AAs, HATU,

NMP, DMF, and TFA were from Applied Biosystems. Fmoc-Tyr (SO3.NnBu4)-

OH and Fmoc-g-Aminobutyric-OH (g-Abu) were from Novabiochem,

(S)-Fmoc-2-amino-octanedioc acid-8-ter-butyl ester (Asu) from Polypeptides,

and Fmoc -L-4 (O-tButylcarboxymethyl)-Phe-OH (pF) from Anaspec. HPLC

grade triethylamine acetate buffer was from GlenResearch. N-succinimidyl-

S-acetylthiopropionate (SATP) was from Pierce.

CCR5/CXCR4 Solubilization

The human receptors CCR5 and CXCR4, featuring a C-terminal C9 tag

(TETSQVAPA), were expressed in Cf2Th canine thymocyte cells as described

previously (Mirzabekov et al., 1999). The CCR5 and CXCR4 solubilization

protocol was adapted from a described procedure (Navratilova et al., 2005).

Briefly Cf2Th.CCR5- or CXCR4-expressing cells (5–8 3 106) were solubilized

in 1 ml buffer consisting of 100 mM (NH4)2SO4, 20 mM Tris-HCl (pH 7.5),

10% glycerol, 15% PEG 8000, protease inhibitors, CHS (0.2%), DOM

(1.5%), CHAPS (1.5%), and 0.33 mM DOPC:DOPS liposomes (see detailed

buffer preparation in the Supplemental Experimental Procedures). The cell

suspension was sonicated (6 3 1 s pulses) and placed on a rotating wheel
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at 4�C for 3 hr. The solutions containing the solubilized coreceptors were

centrifuged at 14,000 rpm for 30 min at 4�C and the supernatants were either

used directly in SPR analysis or stored at �80�C until further use.

Surface Plasmon Resonance-Based Binding Platform

The interactions between gp120 and its ligands (CD4, mAb 17b, CCR5, and

CXCR4) were analyzed by surface plasmon resonance (SPR) technology.

For that purpose, N-ethyl-N0-(diethylaminopropyl)-carbodiimide (EDC)/N-

hydroxy-succimide (NHS) activated CM4 sensorchips were functionalized

with either 1,200 RU of soluble CD4, 700 RU of mAb 17b, or 7,000 RU of

mAb 1D4 and blocked with pH 8.5 1 M ethanolamine. The C9-tagged CCR5

or CXCR4 were captured onto the 1D4 mAb to a level of �4,000 RU. In

some cases, gp120 were also immobilized onto CM4 sensorchip. For this,

MN (50 mg/ml in 5mMmaleate buffer [pH 6]) or YU2 (50 mg/ml in 10mMacetate

buffer [pH 4.8]) were injected at 5 ml/min over an EDC/NHS activated flow cell

until levels of 4,500 RU was obtained. Molecules under investigation were

injected over the different surfaces and the binding responses were recorded

as a function of time (see Supplemental Experimental Procedures).

Peptide Synthesis and Purification

Peptides were prepared by solid-phase peptide synthesis on H-Ser(tBu)-2-

ClTrt-PS-resin using Fmoc chemistry excepted for the E13 peptide which

was prepared on Fmoc-Glu(tBu)-PHB-PS-resin. Fmoc-Tyr-(SO3.NnBu4)-OH

was used to synthesize the sulfotyrosines containing peptide. SATP was

used to introduce a protected sulfhydryl groups at the N terminus of each puri-

fied peptide, which were then conjugated in presence of hydroxylamine to a K5

maleimide-activated mCD4, the synthesis of which has been reported else-

where (Baleux et al., 2009) to yield the desired conjugates mCD4-P3YSO3,

mCD4-P3Y, mCD4-P3pF, mCD4-P3Asu and mCD4-E13. All compounds

were purified by RP-HPLC. Analytical procedures, characterization, and quan-

tification of these materials are described in the Supplemental Information.

Antiviral Assay

Phytohemagglutinin (PHA)-P-activated PBMCs were infected either with the

reference lymphotropic HIV-1/LAI strain (Barré-Sinoussi et al., 1983) or with

the reference macrophage-tropic HIV-1/Ba-L strain (Gartner et al., 1986).

These viruseswere amplified in vitro with PHA-P-activated bloodmononuclear

cells. Viral stocks (including clinical isolates) were titrated using PHA-P-

activated PBMCs, and 50% tissue culture infectious doses (TCID50) were

calculated using Kärber’s formula (Kärber, 1931). Viruses (125 TCID50) were

incubated for 30 min with five concentrations (1:5 dilutions between 500 nM

and 320 pM) of each of the molecules to be tested and added to 150,000

PBMCs (moi �0.001). Cell supernatants were collected at day 7 postinfection

and stored at �20�C. In some cases, the compounds were added to the cells

prior to viral challenge. Viral replication was measured by quantifying reverse

transcriptase (RT) activity in the cell culture supernatants using the Lenti RT

Activity Kit (Cavisi) and AZT was used as reference anti-HIV-1 molecule. In

parallel, cytotoxicity was evaluated on day 7 in uninfected PHA-P-activated

PBMC using a colorimetric methyl-tetrazolium salt (MTS/PMS) assay (Prom-

ega). Experiments were performed in triplicate and 50, 70 and 90% effective

doses (ED) were calculated using SoftMaxPro software.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures, two tables, and Supplemental

Experimental Procedures and can be found with this article online at doi:10.

1016/j.chembiol.2011.12.009.
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